
Eur. Phys. J. B 42, 293–296 (2004)
DOI: 10.1140/epjb/e2004-00382-7 THE EUROPEAN

PHYSICAL JOURNAL B

Hollywood blockbusters and long-tailed distributions
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Abstract. Numerical data for all movies released in theaters in the USA during the period 1997−2003 are
examined for the distribution of their popularity in terms of (i) the number of weeks they spent in the
Top 60 according to the weekend earnings, and (ii) the box-office gross during the opening week, as well
as, the total duration for which they were shown in theaters. These distributions show long tails where
the most popular movies are located. Like the study of Redner [S. Redner, Eur. Phys. J. B 4, 131 (1998)]
on the distribution of citations to individual papers, our results appear to be consistent with a power-law
dependence of the rank distribution of gross revenues for the most popular movies with a exponent close
to −1/2.

PACS. 89.75.Da Systems obeying scaling laws – 89.65.-s Social and economic systems –
02.50.-r Probability theory, stochastic processes, and statistics

In recent times there has been a surge of interest in ap-
plying statistical mechanics to understand socio-economic
phenomena [1]. The aim is to seek out patterns in the ag-
gregate behavior of interacting agents, which can be indi-
viduals, groups, companies or nations. Examples of such
patterns arising in a social or economic context include
the Pareto law of income distribution [2], Zipf’s law in the
distribution of firm sizes [3], etc. Another fruitful area for
seeking such patterns is the evolution of collective choice
from individual behavior, e.g., the sudden emergence of
popular fads or fashions [4]. The popularity or “success”
of certain ideas or products, compared to their numerous
(often very similar) competitors, cannot be explained ex-
clusively on the basis of their individual merit. Empirical
investigation of such popularity distributions may shed
light on this issue. In particular, they can be used to test
different theories of how collective choice emerges from in-
dividual decisions based on limited information and com-
munication among agents [5]. With this objective, we have
investigated in this paper the popularity of movies by es-
timating the distributions of their gross earnings (open-
ing and total) and their endurance in the box office. Our
results appear to be consistent with a power-law depen-
dence of the rank distribution of gross revenues for the
most popular movies, with an exponent close to −1/2.

A number of recent papers have looked at the empiri-
cal distribution of popularity or ‘success’ in different areas.

a e-mail: sitabhra@imsc.res.in
b e-mail: raghav@mse.ac.in

Redner [6] has analyzed the distribution of citations of in-
dividual papers and has found that the number of papers
with x citations, N(x) has a power law tail N(x) ∼ x−3.
This is consistent with his observation that the Zipf plot
of the number of citations against rank has a power law
dependence with exponent ∼−1/2. In contrast, Laherrère
and Sornette [7] have looked at the lifetime total citations
of the 1120 most cited physicists, and Davies [8] at the
lifetime total success of popular music bands as measured
by the total number of weeks they were in the weekly
top 75 list of best-selling recordings. Both report the oc-
currence of stretched exponential distribution. Teslyuk
et al. [9] have focussed on the popularity of websites, and
have described the rank distribution by a modified Zipf
law. In the specific context of movie popularity, De Vany
and Walls have looked at the distribution of movie earn-
ings and profit as a function of a variety of variables, such
as, genre, ratings, presence of stars, etc. [10]. They have
shown that the distribution of box-office revenues follow
a Levy stable distribution [11] arising from Bose-Einstein
dynamics in the information feedback among movie au-
diences [12]. Stauffer and Weisbuch [13] have tried to re-
produce the observed rank distribution of top 250 movies
(according to votes in www.imdb.com) using a social per-
colation model. Sornette and Zajdenweber [14] have an-
alyzed the rank distribution for top 20 movies (in terms
of gross revenue earned in USA and Canada) over the pe-
riod 1977−1994 and have found evidence for a power-law
fit, although the exponent seems to vary with time.
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Table 1. Annual data for movies released across theaters in
USA for the period 1997−2003: the 2nd column represents the
number of movies released in the year, N ; the 3rd column is the
average number of weeks a movie spent in Top 60 (in terms of
weekend gross); the 4th and 5th columns represent the average
opening and total gross, respectively, for movies released in
a particular year. The general trend, with a few exceptions,
seems to be that both opening and total gross averages increase
with time. (N.A. = not available).

Year N 〈T 〉 〈GO〉 〈GT 〉
(weeks) (in M$) (in M$)

2003 307 9.5 8.094 29.239

2002 320 9.6 7.468 28.440

2001 285 10.5 7.332 28.331

2000 299 10.2 6.155 25.470

1999 274 10.9 5.638 26.452

1998 260 N.A. 6.389 23.951

1997 289 N.A. 5.735 26.108

For our analysis we decided to look at all movies re-
leased in theaters in the United States during the pe-
riod 1997−2003. These include not only new movies pro-
duced in the USA in this period, but also re-release of older
movies as well as movies made abroad [15]. However, per-
haps unsurprisingly, the top performing movies (in terms
of box-office earnings) almost invariably are products of
the major Hollywood studios. The primary database that
we used was The Movie Times website [16] which listed
the movies released during these years and, for the pe-
riod 1999−2003, had information concerning the opening
and total gross and the number of weeks the movie stayed
at Top 60 according to the weekend earnings. The corre-
sponding data for 1997−98 was obtained from the Internet
Movie Database [17]. Table 1 gives all the relevant details
concerning the data set used for the following analysis.

As a first measure of popularity we look at the number
of weeks a movie spent in the Top 60. While this quantity
may superficially seem similar to that observed by Davies
for popular musicians [8], note that we are looking at the
popularity of individual products (releases) and not the
overall popularity of the producer (performer). Figure 1
shows the relative frequency distribution of the number of
weeks a movie spent in Top 60, scaled by its average for a
given year, and then averaged over the period 1999−2003.
The period of one year was chosen to remove all seasonal
variations in moviehouse attendance, e.g., the peak around
Christmas. The data for less popular movies could be fit-
ted very well with a normal distribution. However, the
more popular movies reside at the long tail of the distri-
bution and cannot be explained by a Gaussian process.

The scarcity of data points in the tail meant that
one could not infer the exact dependence from the rel-
ative frequency distribution alone. We, therefore, looked
at the rank ordering statistics which focuses on the largest
members of the distribution (the most popular movie be-
ing ranked 1). As has been noted previously, the expo-
nent of a power-law distribution can be determined with
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Fig. 1. Normalized relative frequency distribution of number
of weeks in Top 60 divided by the average number of weeks
spent by movies in Top 60 in a year. The frequency distribu-
tion is computed for each year in the period 1999−2003 and
then averaged over the entire period. The curve represents a
Gaussian distribution fitted over the data.

good accuracy in such a plot, even with relatively few
data points [6,7]. Figure 2 shows a rank ordered plot
of the scaled time that a movie spent in the Top 60.
The ranks (k) have been scaled by the total number of
movies (N) that were released in a particular year. Note
that the data for all the years 1999−2003 appear to follow
the same curve (excepting for the top ranked movies). A
power-law distribution fitted to this data gives an expo-
nent of �−0.248. However, because of the limited range
of scaling it is not possible to estimate the error involved.
The result implies that while the endurance of less popu-
lar movies seems to be a stochastic process, the longevity
of more popular movies at the box office is possibly due to
interactions among agents (moviegoers) through a process
of information transfer. This could be responsible for the
deviation from a Gaussian distribution and the formation
of a long tail approximately following a power law.

However, a movie residing in the Top 60 for a long
time does not necessarily imply that it was seen by a
large number of people. A few of the longest running
movies were films designed for specialized projection the-
aters having giant screens, e.g., in our dataset the movie
which spent the maximum time in the Top 60 (95 weeks)
was “Shackleton’s Antarctic Adventure” that was being
shown at Imax theaters. In terms of gross earnings, these
movies performed poorly. Therefore, we decided to look
at the box-office revenues of movies, both for the opening
week and for the total duration it was shown at theaters.
Although total gross may be a better measure of movie
popularity, the opening gross is often thought to signal
the success of a particular movie. This is supported by
the observation that about 65−70% of all movies earn
their maximum box-office revenue in the first week of re-
lease [11].
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Fig. 2. Zipf plot of the number of weeks, T , spent in Top 60
by the kth ranked movie for the years 1999−2003. The rank k
has been scaled by N , the total number of movies released
in theaters that year, while T has been scaled by its annual
average. A straight line of slope −0.248 is shown for visual
reference.

To correct for inflation, we scaled the gross earnings
by the average values for a particular year. The relative
frequency distributions had too few points at their ex-
tremities for a reasonable determination of the nature of
the tails. For better resolution of the distribution at the
tails, we looked at the Zipf plots (Fig. 3). Scaling the
rank (k) by the total number of movies released (N), and
the gross by its average for that year, led to the data for
all years collapsing onto the same curve. This indicates
that the distribution is fairly stable across the period un-
der study. The data for the opening, as well as the total
gross, show an approximate power law distribution with
an exponent ∼−1/2 in the region where the top grossing
movies are located.

The only difference between the opening and the total
gross Zipf plots occur at the region of poorly performing
movies, with a kink in the former that indicates the pres-
ence of bimodality in the opening gross distribution [18].
Based on this we conclude that, movies in their opening
week, either perform very well, or very poorly. However,
some movies, though not popular initially, may generate
interest over time and eventually become successful in
terms of total revenue earned. In movie parlance, these
are known as “sleeper hits”. This can be seen from the
total gross distribution becoming unimodal, showing a
smoother curvature than the opening gross distribution
in the Zipf plot.

To verify whether the data is better explained by
a stretched exponential distribution, we have fitted the
cumulative relative frequency distribution of scaled to-
tal gross, GT /〈GT 〉, to a function of the form Pc(x) ∼
exp[−(x/x0)β ], with x0 = 1 and β = 0.67 for the best fit.
However, the rank distribution curve obtained for these
parameter values did not describe well the corresponding
empirical data over the entire range. A similar exercise
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Fig. 3. Zipf plots of the scaled rank distribution of movies
according to the opening gross (top) and total gross (bottom)
for the years 1997−2003. The rank k has been scaled by the
total number of movies released that year (N), while the gross
(GO, GT ) has been scaled by its annual average. Straight lines
of slope −0.5 are shown for visual reference.

was carried out for the opening gross data which gave dif-
ferent parameter values for best fit. As in the case of total
gross, these also failed in describing the opening gross rank
distribution over the entire range.

The occurrence of different exponent values for the dis-
tribution of time spent in Top 60 and the gross distribu-
tions may initially seem confusing. To resolve this issue
we looked at the total gross of a movie, GT , against the
number of weeks that it spent in the Top 60, T (Fig. 4).
All movies released during 1999−2003 were used to gen-
erate the figure. Plotting the average total gross ḠT for
all movies with the same T on log-log scale (Fig. 4, inset)
yielded a relationship that implied ḠT ∼ T 2.14±0.1, which
is consistent with the exponent obtained from gross dis-
tribution being approximately twice that of the exponent
obtained from the distribution of number of weeks spent
in Top 60. To make sure that inflation has not affected the
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Fig. 4. Plot of the total gross (GT ) against the number of
weeks spent in Top 60 (T ) for all movies released during the
years 1999−2003. Note that the few outliers on the right of the
figure (with large values of T ) correspond almost exclusively to
movies specially produced for screening in Imax theaters. The
inset shows the average total gross ḠT for all movies with the
same T , plotted against T on a log-log scale. A straight line of
slope 2.14 is shown for visual reference.

averaging, we have also looked at the year-by-year average
total gross for movies with the same T , plotted against T .
The average exponent for a power law fit of the initial part
of the distribution is 2.12 ± 0.12.

We have also looked at the distribution of movie pop-
ularity according to the number of votes they received
from registered users of IMDB [17]. The Zipf plot of the
votes against the movie rankings for the top 250 movies
as of May 9, 2004, did not seem to follow a single func-
tional relation over the full range. However, the middle
range seemed to fit an exponential distribution. Note that
this popularity measure is very different from the ones we
have used above, as in this case, most of the movies in
the top 250 list are very well-known and a large amount
of information is available about them. On the other
hand, the movies that have been released recently are rel-
atively unknown and people often make their decisions
to watch them on the basis of incomplete and unreliable
information.

We want to point out that the gross distributions of
individual films is similar in nature to the citation distri-
bution of scientific papers investigated by Redner [6]. It
is of interest to note that he also obtained an exponent
of −1/2, in the very different context of a Zipf plot of the
number of citations to a given paper against its citation
rank. This may be indicative of an universal feature, as
both these cases are looking at how success or popularity
is distributed in different areas of human creativity. In
both cases, an individual entity (paper or movie) becomes
popular, or successful, as a result of information propa-
gation in a community. The influence of this information

on individual choice, and the resulting actions of a large
number of individuals, leads to the collective response of
the community to the entity. To be popular, an entity
needs to generate a large number of favorable responses.
Clearly, while most such entities elicit a stochastically dis-
tributed number of favorable responses, a few manage to
generate enough initial popularity which then gets ampli-
fied through interactions among agents to make it even
more popular. In other words, the interactions cause the
distribution to deviate from that of a purely random pro-
cess, resulting in the long tails seen in the popularity
distributions.

We would like to thank D. Stauffer for arousing our interest in
this topic and B.K. Chakrabarti for critical comments.
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